8 research outputs found

    A Bayesian time-to-event pharmacokinetic model for sequential phase I dose-escalation trials with multiple schedules

    Full text link
    Phase I dose-escalation trials constitute the first step in investigating the safety of potentially promising drugs in humans. Conventional methods for phase I dose-escalation trials are based on a single treatment schedule only. More recently, however, multiple schedules are more frequently investigated in the same trial. Here, we consider sequential phase I trials, where the trial proceeds with a new schedule (e.g. daily or weekly dosing) once the dose escalation with another schedule has been completed. The aim is to utilize the information from both the completed and the ongoing dose-escalation trial to inform decisions on the dose level for the next dose cohort. For this purpose, we adapted the time-to-event pharmacokinetics (TITE-PK) model, which were originally developed for simultaneous investigation of multiple schedules. TITE-PK integrates information from multiple schedules using a pharmacokinetics (PK) model. In a simulation study, the developed appraoch is compared to the bridging continual reassessment method and the Bayesian logistic regression model using a meta-analytic-prior. TITE-PK results in better performance than comparators in terms of recommending acceptable dose and avoiding overly toxic doses for sequential phase I trials in most of the scenarios considered. Furthermore, better performance of TITE-PK is achieved while requiring similar number of patients in the simulated trials. For the scenarios involving one schedule, TITE-PK displays similar performance with alternatives in terms of acceptable dose recommendations. The \texttt{R} and \texttt{Stan} code for the implementation of an illustrative sequential phase I trial example is publicly available at https://github.com/gunhanb/TITEPK_sequential

    Recent advances in methodology for clinical trials in small populations : the InSPiRe project

    Get PDF
    Where there are a limited number of patients, such as in a rare disease, clinical trials in these small populations present several challenges, including statistical issues. This led to an EU FP7 call for proposals in 2013. One of the three projects funded was the Innovative Methodology for Small Populations Research (InSPiRe) project. This paper summarizes the main results of the project, which was completed in 2017. The InSPiRe project has led to development of novel statistical methodology for clinical trials in small populations in four areas. We have explored new decision-making methods for small population clinical trials using a Bayesian decision-theoretic framework to compare costs with potential benefits, developed approaches for targeted treatment trials, enabling simultaneous identification of subgroups and confirmation of treatment effect for these patients, worked on early phase clinical trial design and on extrapolation from adult to pediatric studies, developing methods to enable use of pharmacokinetics and pharmacodynamics data, and also developed improved robust meta-analysis methods for a small number of trials to support the planning, analysis and interpretation of a trial as well as enabling extrapolation between patient groups. In addition to scientific publications, we have contributed to regulatory guidance and produced free software in order to facilitate implementation of the novel methods
    corecore